
Creating cloud object storage
infrastructure without getting hurt

https://www.host-telecom.com/blog/creating-cloud-object-storage-infrastructure-without-getting-
hurt/

December 21, 2017 by Denise Boehm
When creating cloud object storage with open source software, a strong understanding
of the underlying hardware infrastructure is key to creating a high-functioning, scalable
solution. While it’s good to know that OpenStack Swift can deliver high input/output
operations per second (IOPS) and that Ceph tends to deliver better data consistency,
object storage success is highly dependent on the ability of your hardware infrastructure
to scale the types of workloads you’re running.

To illustrate that point, we consider here the anonymous, true story of a young
developer we’ll call Antoine and his then-employer, which we’ll refer to as Services ’R
Us. Early in his career with Services ’R Us, Antoine learned the hard way about
interactions between software, servers, and disks and the hardware’s critical role in
creating high-performing object storage solutions that scale. This story is the cautionary
tale of lessons learned followed by some really excellent advice informed by cured
cluelessness.

Software is king…
Services ’R Us provided multiple cloud services and seeing a gap in storage, instructed
young engineer Antoine and his team to come up with a cloud object storage solution.
The team, not unreasonably, made their first task identifying a software development
platform. Reviewing the options, Antoine decided to use open source for its power and
flexibility saying, “We chose OpenStack Swift for its IOPS performance and because it
was a non-proprietary platform.”

However, he and his team were novices to the technology, Antoine admitting, “We didn’t
have any experience with it (Swift) or real knowledge of how to build an architecture that
would allow us to easily scale when we hit a certain point.” Nevertheless, they built the
software, configured the hardware, launched the product, and customers started using
it.

https://www.host-telecom.com/blog/creating-cloud-object-storage-infrastructure-without-getting-hurt/
https://www.host-telecom.com/blog/creating-cloud-object-storage-infrastructure-without-getting-hurt/
https://wiki.openstack.org/wiki/Swift
http://ceph.com/

And the good times rolled – until they didn’t
Of the initial release from Services ’R Us, Antoine noted, “We had a successful launch
and got good response from our users. We thought it would be really easy to scale our
object storage solution on different hardware configurations.” Indeed, for about a year,
Services ’R Us had an increasing list of happy customers and no problems supporting
various hardware configurations. That’s when the hammer dropped, and it dropped fast.

Failure at scale without warning
After a year of steady, incident-free user adoption, performance declined suddenly and
dramatically. Object storage was approaching 1 PB of data with a replication factor of 3,
and the number of stored objects was in the several billions when alarming increases in
latency and resulting user time-outs quickly created a critical situation. But the Services
’R Us team couldn’t pinpoint the cause of the breakdown.

Crisis mode
With great initial performance driving high demand for its storage services, Services ’R
Us was now looking at a brick wall with continued growth. “Continuing to scale at that
point was starting to kill us, and we really had to scramble,” Antoine remembers.
However, with the source of the performance problems not immediately evident and as
the situation became critical, Antoine said the team really started to question the viability
of Swift. “We did not have monitoring enabled and couldn’t pinpoint the slowdown and
were really considering Ceph despite its slower IOPS performance. But because latency
and not data integrity was the big issue, Ceph didn’t seem like a plausible cure,” he
said.

Admitting that he and his colleagues had flown a bit by the seat of their pants during
development with a myopic view on software, Antoine said, “We really weren’t prepared
for how much the demand on storage would increase and how quickly we’d outgrow our
infrastructure. Our servers were at capacity with drives, processors, and the network all
maxed out.” The team started working the hardware angle.

Bad gets worse
Correctly diagnosing the problem as rooted in hardware was half of the solution, but
Antoine was facing some additional challenges. While some of the original engineering
team moved forward to fix the object storage solution, some of them moved out of

Services ’R Us completely. To make matters worse, no one had properly documented
the project before the exodus, creating the perfect storm.

Just add some more disks and servers, right?
To Antoine and what was left of the original team operating with incomplete information,
it made sense to implement a major upgrade of the hardware infrastructure now that
they knew it was the root cause of their object storage performance degradation. But
there was a huge hitch. “We got the brilliant idea to upgrade the servers with a lot more
disks, Antoine said, “But when we disconnected one server for the upgrade, we had a
complete degradation in storage performance. It turned out that changes made to the
proxy server had screwed up the cluster.” He noted that they couldn’t tell if the cluster
had rebalanced, but that they saw a huge data loss and data inconsistency after they
renewed the Swift cluster. The remaining team continued on with different repair efforts,
and it was a long road.

Six months to normal
Tweaking for improvements in latency, the team saw minor performance increases but
a huge slowdown in data replication. Increased replication speeds brought
compromises in data integrity and more customer timeouts. Picking the problems apart
and finding solutions that didn’t introduce more problems was a painstaking process
that took six months to untangle.

During this time, the Services ’R US team completely reworked the hardware
architecture and the Swift software solution running on it, eliminating all superfluous
functionality to ensure strong object storage performance. The move to rebuild from the
ground up required a major paradigm shift to avoid their original, eventually crippling
mistakes. So now we’ll look at how they approached the problem with wisdom gained
from the school of hard knocks.

The do-over
As Antoine and his Services ’R Us colleagues rethought their object storage offering,
they focused first on how their customers were using the solution, then the physical
resources necessary, and finally the best software solution for the hardware that would
scale together. So we begin with their customer profiles.

Defining customer types
The first object storage customer group Antoine and team defined was web application
users. The data for web apps are static on high-load, scalable applications and mobile
applications, using CSS, JSON, graphics, photos, animation, and flash games. Data
storage requirements for static data range between a kilobyte to several megabytes. In
general, users can access this data from storage, and workloads tend to be much
higher during business hours with a significant effect on IOPS.

The second defined customer group was users storing larger amounts of archived data
and backups, ranging in size from MBs to GBs. Examples of this type of user are
healthcare institutions and businesses with digitized data, often documents, who require
writing functionality often for nighttime backups. Capacity is a bigger issue than IOPS
for this type of user.

With the variations in data types, sizes, and user requirements, Antoine and his group
began planning their revamped object storage solution to include specific
customizations for both static and archived data response times and consistency. They
then turned to hardware infrastructure and the best software to run on it to
accommodate customer needs.

Hardware basics
Antoine’s first step was considering the basics about data read/write for his first
audience of static data users, concluding that capacity and efficiency were of primary
importance, rather than speed. In Figure 1 is a simple load executing triple replication.
The proxy server receives the “PUT” query for the 3 data copies and creates 3 requests
to the object server. With two successful replications, the object server returns a
response of 200 to the client. Storage’s disk load and bandwidth thus increased times
three. With the GET request, the load was proportional to the incoming request.

Fig. 1 — Simple load executing triple replication

Beyond the basics
Not designing for simple loads, Antoine and his team looked at other ways to achieve
high productivity knowing that disk capacity didn’t necessarily correlate with increase
performance. An alternative they considered was using multiple disks for increased
volume to avoid single points of failure. While some developers get around this problem
using larger servers, for example 2TB in a 2-unit server, server storage can be an issue,
and power consumption is greater with higher associated costs.

With IOPS the key to balancing data volume, they looked for a cost-effective solution.
Antoine decided to use JBODs containing 44 disks at 10 terabytes each with an
occupied space of four units. He also created safeguards against points of failure,
maximizing IOPS on similar storage volumes, which is discussed below. Now
comfortable in the object storage infrastructure they’d designed, Antoine and the team
turned to data performance and software analysis.

Maximizing data performance
With the understanding that IOPS was the big bottleneck, the Services ’R Us team
considered the remaining decisions necessary to build an optimal object storage
solution. To ensure system integrity and performance, Antoine referenced Consistency,
Availability, and Partition Tolerance (CAP) Theorem, as shown in Figure 2, which states

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem

that a distributed data store cannot simultaneously provide all three qualities. He shot
for availability and consistency.

Fig. 2 — CAP Theory

A second look at CEPH
With CAP Theorem in mind, the team returned to software options, with a second, more
thorough analysis of CEPH. Created for block storage and limited volumes, CEPH is
used for clustered file systems as well as object storage. Its strength is maintaining data
consistency, and when an object storage device fails or stops, the Controlled
Replication Under Scalable Hashing (CRUSH) algorithm automatically starts the
rebalancing process to redistribute data in the remaining OSDs.

Because rebalancing requires time and resources, and its functions are prioritized over
client requests, the possibility of slowdowns and customer timeouts increases. Having
faced serious latency and timeouts on the first object storage go-round, the team now
took a deeper look at its original software development platform, OpenStack Swift.

Swift on second glance
While Swift hadn’t panned out well in the first object storage release, IOPS were still
top-of-mind for Service’s ’R Us, and Swift’s first priority is client traffic, followed by
asynchronous object writing and deletion, then data consistency and data replication.
Certainly CEPH had the upper hand on the two last items of the priority list, but Swift
looked to deliver on the first three. In addition, the team had addressed the major issue

http://whatis.techtarget.com/definition/CRUSH-Controlled-Replication-Under-Scalable-Hashing
http://whatis.techtarget.com/definition/CRUSH-Controlled-Replication-Under-Scalable-Hashing

of hardware infrastructure, so Swift was back. Now time to look at increasing and
maintaining performance.

Optimizing object storage integrated
components

Keeping their top two CAP goals of consistency and availability in mind, Antoine led the
team in delivering high performing object storage deployments with the re-engineered
infrastructure using JBODs. It wasn’t all smooth sailing, though.

Challenges on the way
The team found that cluster performance took a bit of a hit under high load, with most
disks loaded to IO, two replications instead of three, and the third delayed to the
asynchronous queue line, causing software performance to dip. In a server or disk
failure scenario, replication was interrupted with associated declines in data
consistency. On another front, the team found that expanding the cluster caused traffic
disruptions.

Making the infrastructure work
Antoine and his colleagues found that adding new servers to the cluster ring and
rebalancing it enabled client traffic to process normally. Without rebalancing, IOPS and
physical storage decreased and replication and consistency suffered with slow system
restoration.

Segregating customer types improves performance in ways not readily
apparent

While they found no miracle cures for improving object storage performance, dividing
the customers by use types was a huge advantage, but not for the reasons that
Services ’R Us developers thought.

With the first tier of web app customers using static data for read/write functions mainly
during business hours and the second tier of customers storing larger amounts of
archived data and backups with higher use rates at night, it initially seemed that putting
both types on the same disks would work out, but it didn’t. Instead, disks performing
client operations constrained IOPS around replication and had a negative effect on data

consistency. The solution was keeping customers on different disks with hot and cold
clusters, one for IOPS performance and the other for data backup.

Cache systems for bottlenecks
Antoine and his colleagues also found that adding a cache system for web app
read/write was helpful in preventing bottlenecks, using enhanced IO and placing cache
on NVME disks. The cache partition connects and disconnects from disks with live data.
With triple replication, Antoine found that project cache must be ⅓ the size of the hot tier
accommodating read/write functionality to accommodate upticks in client traffic and
obviate the need for huge SATA disks.

Double server connections
A final point concerns inaccessible Swift disks that are lost if shut down. This is where
Antoine’s JBOD solution really delivers. Adding dual-ported SAS disks to a server can
extend JBOD to two servers and switch them to others servers as needed, minimizing
downtown and preserving data integrity.

No pain no gain
While neither he nor his colleagues would do it the same way again, Antoine knows he
learned more about object storage architecture than if he’d done it right the first time.
Hopefully you can avoid similar pitfalls from the perspective of hard-won experience.

BY

Denise Boehm

